「DL」 GAN 资源汇总
图1:GAN 的 论文数量
1 学术
第一篇论文
- :o: Generative Adversarial Nets
2014-06-10 Paper | Code
1.1 综述
-
:o: Goodfellow I. NIPS 2016 tutorial: generative adversarial networks. arXiv preprint arXiv: 1701.00160, 2016.
2016-12-31 -
How Generative Adversarial Networks and its variants Work: An Overview of GAN
2017-11 Paper, 中文笔记 -
生成式对抗网络 GAN 的研究进展与展望
2017 中科院自动化所,中文综述;
1.2 理论
-
Energy-based generative adversarial network
Code
Lecun paper -
Improved Techniques for Training GANs
Code
Goodfellow’s paper -
Mode Regularized Generative Adversarial Networks
Yoshua Bengio , ICLR 2017 -
Improving Generative Adversarial Networks with Denoising Feature Matching
Code
Yoshua Bengio , ICLR 2017 -
Towards Principled Methods for Training Generative Adversarial Networks
ICLR 2017 -
Unrolled Generative Adversarial Networks
Code
ICLR 2017 -
Least Squares Generative Adversarial Networks
Code
ICCV 2017 -
Improved Training of Wasserstein GANs
Code
The improve of wgan -
Towards Principled Methods for Training Generative Adversarial Networks
-
Generalization and Equilibrium in Generative Adversarial Nets
ICML 2017 -
GANs Trained by a Two Time-Scale Uplast_modified_at Rule Converge to a Local Nash Equilibrium
Code -
Spectral Normalization for Generative Adversarial Networks
Code
ICLR 2018 -
Which Training Methods for GANs do actually Converge
Code
ICML 2018 -
Self-Supervised Generative Adversarial Networks
Code
CVPR 2019 -
Generative Flow via Invertible nxn Convolution
2019-05-24 paper
1.3 经典网络
- StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation
2017-11-24 paper | pytorch
多领域图像转换
- Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
ICLR 2015 2015-11-19 Theano | Keras | Pytorch | Pytorch-MNIST/CelebA | Tensorflow | Torch
DCGAN
将卷积网络引入 GAN 中,且使用了 BN,证明了池化在 GAN 中不能使用;提供了许多有趣的生成结果;
1.4 模型评估
-
An empirical study on evaluation metrics of generative adversarial networks
2018-06 paper -
How good is my GAN?
ECCV 2018 2018-07 paper
1.5 不确定性
GAN 生成图像的不确定性——不连贯;
- Visual Indeterminacy in Generative Neural Art
NIPS 2019 workshop 2019-10-10 paper
2 技术应用
2.1 半监督学习
-
Adversarial Training Methods for Semi-Supervised Text Classification
Note
Ian Goodfellow Paper -
Improved Techniques for Training GANs
Code
Goodfellow’s paper -
Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks
ICLR -
Semi-Supervised QA with Generative Domain-Adaptive Nets
ACL 2017 -
Good Semi-supervised Learning that Requires a Bad GAN
Code
NIPS 2017
2.2 集成学习
-
AdaGAN: Boosting Generative Models
[Code] Google Brain -
GP-GAN: Towards Realistic High-Resolution Image Blending
Code
2.3 条件对抗
-
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
Code Code -
Conditional Image Synthesis With Auxiliary Classifier GANs
Code
GoogleBrain ICLR 2017 -
Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space
Code -
Lifelong GAN: Continual Learning for Conditional Image Generation
ICCV 2019 2019-07-23 paper
2.4 强化学习
- Connecting Generative Adversarial Networks and Actor-Critic Methods
NIPS 2016 workshop
2.5 RNN
-
C-RNN-GAN: Continuous recurrent neural networks with adversarial training
Code -
SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient
Code(AAAI 2017)
2.6 离散分布生成
-
Maximum-Likelihood Augmented Discrete Generative Adversarial Networks
-
GANS for Sequences of Discrete Elements with the Gumbel-softmax Distribution
3 业务
3.1 CV
3.1.1 高质量生成
3.1.1.1 通用图像生成资源
3.1.1.2 人脸生成
3.1.1.3 人脸编辑
3.1.1.4 季节变换
3.1.1.5 风格迁移资源
3.1.1.6 其他
-
Improved Techniques for Training GANs
Code
Goodfellow’s paper -
Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space
Code -
StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks
2016-11-10 paper | tensorflow | pytorch | v2-pytorch
StackGAN: -
Boundary Equibilibrium Generative Adversarial Networks Implementation in Tensorflow
Code -
Progressive Growing of GANs for Improved Quality, Stability, and Variation
Code[Tensorflow Code] -
Self-Attention Generative Adversarial Networks
Code
NIPS 2018 -
Large Scale GAN Training for High Fidelity Natural Image Synthesis
ICLR 2019 -
A Style-Based Generator Architecture for Generative Adversarial Networks
Code -
Dilated Spatial Generative Adversarial Networks for Ergodic Image Generation
2019-05-15 paper
膨胀卷积助力边缘清晰; -
Variational Hetero-Encoder Randomized Generative Adversarial Networks for Joint Image-Text Modeling
2019-05-18 paper | OpenReview
3.1.2 检测
-
Perceptual generative adversarial networks for small object detection
CVPR 2017 -
A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection
Code
CVPR 2017
3.1.3 分类&识别
-
Generative OpenMax for Multi-Class Open Set Classification
BMVC 2017 -
Controllable Invariance through Adversarial Feature Learning
Code
NIPS 2017 -
Unlabeled Samples Generated by GAN Improve the Person Re-identification Baseline in vitro
Code
ICCV2017 -
Learning from Simulated and Unsupervised Images through Adversarial Training
Code(Apple paper, CVPR 2017 Best Paper)
3.1.4 数据增强
- LiDAR Sensor modeling and Data augmentation with GANs for Autonomous driving
ICML Workshop on AI for Autonomous Driving 2019 2019-05-17 paper
3.1.5 显著性检测
Saliency Prediction
3.1.6 检索
- IRGAN: A Minimax Game for Unifying Generative and Discriminative Information Retrieval Models
2017-05-30 paper
IRGAN:
3.1.7 异常检测
Anomaly Detection
- Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
IPMI 2017 2017-03-17 paper
医疗;
3.2 视频
3.2.1 视频生成
-
Deep multi-scale video prediction beyond mean square error
Code
Yann LeCun’s paper -
MoCoGAN: Decomposing Motion and Content for Video Generation
3.3 NLP
3.3.1 图像翻译
-
Image-to-image translation using conditional adversarial nets
Code
Code - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
Code
-
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
ICCV 2017 2017-03-30 paper | torch-official | pytorch-official | project | blog
CycleGAN -
CoGAN: Coupled Generative Adversarial Networks
Code
NIPS 2016 -
Unsupervised Image-to-Image Translation with Generative Adversarial Networks
NIPS 2017 -
High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs
Code
掩码转图像; -
XGAN: Unsupervised Image-to-Image Translation for Many-to-Many Mappings
Reviewed -
UNIT: UNsupervised Image-to-image Translation Networks
Code
NIPS 2017 -
GestureGAN for Hand Gesture-to-Gesture Translation in the Wild
Code -
Art2Real: Unfolding the Reality of Artworks via Semantically-Aware Image-to-Image Translation
CVPR 2019 -
Fonts-2-Handwriting: A Seed-Augment-Train framework for universal digit classification
ICLR 2019 2019-05-16 paper | code
手写数字生成; - Toward Learning a Unified Many-to-Many Mapping for Diverse Image Translation
2019-05-21 paper
3.4 音频
3.4.1 MUSIC
- MidiNet: A Convolutional Generative Adversarial Network for Symbolic-domain Music Generation using 1D and 2D Conditions
HOMEPAGE
3.5 多模态
3.5.1 融合
3.5.2 语义图转照片
- S-Flow GAN
2019-05-21 paper
4 其他
-
Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks
2015-01-18 paper | torch -
Adversarial Autoencoders
2015-11-18 paper | chainer -
Generating Images with Perceptual Similarity Metrics based on Deep Networks
2016-02-08 paper | tensorflow
DeepSim -
Generating images with recurrent adversarial networks
2016-02-16 paper | theano
GRAN -
Generative Visual Manipulation on the Natural Image Manifold
ECCV 2016 2016-09-12 paper | theano
iGAN -
Learning What and Where to Draw
NIPS 2016 2016-10-08 paper | torch -
Adversarial Training for Sketch Retrieval
ECCV 2016 2016-07-10 paper -
Generative Image Modeling using Style and Structure Adversarial Networks
2016-03-17 paper | torch -
Synthesizing the preferred inputs for neurons in neural networks via deep generator networks
NIPS 2016-05-30 paper | caffe | project
synthesizing -
Adversarial Feature Learning
ICLR 2017 2016-05-31 paper -
Adversarially Learned Inference
2016-06-02 paper | theano
ALI -
Generative Adversarial Networks as Variational Training of Energy Based Models
ICLR 2017 2016-11-06 paper | theano-offical
附录
A 数据集
B 研究员
- Ian Goodfellow
- GAN 汇总
- Awesome Adversarial Machine Learning
- TaehoonKim github
- Kuntal Ganguly
- Adversarial network(inFERENCe)
- InfoGan
- Deconvolution and Image Generation
- Gan theory(yingzhenli)
- Generative model(OpenAI)
C 报告
D 参考资料
a 论文
-
GAN Zoo 汇总了所有的 GANs;
-
AdversarialNetsPapers
GANs 论文分类汇总; -
GAN Timeline
GANs 项目汇总;
b 代码
-
generative-models
pytorch 和 tensorflow 实现的 GAN 和 VAE;
c 技能
- GAN 训练技巧 How to Train a GAN?
d 书籍
-
《GANs in Action》
akub Langr, Vladimir Bok. GANs in Action[M]. -. 2019
主页 -
《百面机器学习》
诸葛越. 百面机器学习[M]. 北京:人民邮电出版社. 2018.298-332
-
《Learning GAN》·《GAN 实战生成对抗网络》
Kuntal G. 著, 刘梦馨 译. GAN 实战生成对抗网络[M]. 北京:电子工业出版社, 2018.
英文版本 -
《生成对抗网络入门指南》
史丹青. 生成对抗网络入门指南[M]. 北京:机械工业出版社, 2018.
-
《Web 安全之强化学习与 GAN》
刘淼. Web 安全之强化学习与 GAN[M]. 北京:机械工业出版社, 2018.
e 课程
[1]. 李宏毅. 李宏毅对抗生成网络(GAN)(2018)[EB/OL]. https://www.bilibili.com/video/av24011528?from=search&seid=14571953395351333549.
课件
Comments