less than 1 minute read

智能算法在没有人为指导的情况下,通过不断的试错来提升任务性能的过程;

reinforcement learning

1 综述

  1. A Survey of Deep Reinforcement Learning in Video Games
    2019-12-23 paper

  2. A Survey of Reinforcement Learning Techniques: Strategies, Recent Development, and Future Directions
    2020-01-19 paper

2 理论

  1. Revisiting the Softmax Bellman Operator: New Benefits and New Perspective
    ICML 2019 2018-12-02 paper

  2. Maximum Entropy-Regularized Multi-Goal Reinforcement Learning
    ICML 2019 2019-05-21 paper

3 其他

  1. Meta-Gradient Reinforcement Learning
    2018-05-24 Paper

  2. A Survey on Transfer Learning for Multiagent Reinforcement Learning Systems

  3. Deep Reinforcement Learning for Multi-Agent Systems: A Review of Challenges, Solutions and Applications
    2018-12-31 Paper

  4. Learning 3D Navigation Protocols on Touch Interfaces with Cooperative Multi-Agent Reinforcement Learning
    2019-04-16 Paper
    多代理合作的触摸屏 3D 导航协议;


TOP

附录

A 研究员

  1. David Silver
  2. Richard S. Sutton
  3. David Abel

B 参考资料

1 书籍

  1. Richard S. Sutton, Andrew G. Barto. Reinforcement Learning:An Introduction[M].
    主页 | python 实现 | stanford-pdf

2 课程

  1. An Introduction to Reinforcement Learning
    David Silver, Video-youtube | Video-Bilibili | lectures | python 实现 | google-drive-包括讲义和视频

  2. OpenAI-spinningup

3 博客

  1. 莫凡. 强化学习[EB/OL]. https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/. 2016-11-03/2019-04-19.
  2. 不会停的蜗牛. 一文了解强化学习[EB/OL]. https://www.jianshu.com/p/f4409a8b7f71. 2017-06-16/2019-04-19.
  3. JustFollowUs. Reinforcement-Learning[EB/OL]. https://github.com/JustFollowUs/Reinforcement-Learning. 2017-04-11/2019-04-19.
  4. 王小惟. 强化学习从入门到放弃的资料[EB/OL]. https://zhuanlan.zhihu.com/p/34918639. 2018-03-25/2019-04-22.
  5. ICLR 2018 总结

4 报告

RLDM 2019 笔记-David Abel

Tags:

Categories: ,

Updated:

Comments