「DL」 元学习资源汇总
识别从未见过的数据类别,使模型具有知识迁移的能力;
zero shot learning
1 综述
-
Learning to Detect Unseen Object Class by Between-Class Attribute Transfer
CVPR 2009 2009 paper
最早提出零样本学习;
$\bullet \bullet$ detect -
Zero Shot Learning with Semantic Output Codes
NIPS 2009 2009 paper
$\bullet \bullet$ Output -
Recent Advances in Zero-shot Recognition
2017 paper
$\bullet \bullet$ advance -
A Survey of Zero-Shot Learning: Settings, Methods, and Applications
TIST 2019 2019 paper | blog
$\bullet \bullet$ Survey
2 理论
-
Learning from one example through shared densities on transforms
2000 paper
$\bullet \bullet$
贝叶斯单次学习算法的方法 -
A Neural-Symbolic Architecture for Inverse Graphics Improved by Lifelong Meta-Learning
2019-05-22 paper -
Embedded Meta-Learning: Toward more flexible deep-learning models
2019-05-23 paper
3 小样本学习
3.1 基于度量的
- Prototypical Networks for Few-shot Learning
NIPS 2017 2017-03-15 paper | openreview
3.2 基于模型的
- Task-Agnostic Meta-Learning for Few-shotLearning
2018-05-20 paper | reddit
3.3 基于优化的
-
Optimization as a model for few-shot learning
ICLR 2017 paper | openreview | iclr_notes -
Learning to Compare: Relation Network for Few-Shot Learning
CVPR 2018 2017-11-16 paper | pytorch
文章探讨了这个为什么会有论文中的 idea;提出了一种基于度量(metric-based)的方法,只不过不是人为度量,而是让网络去度量;
3.4 其他
-
Attentive Task-Agnostic Meta-Learning for Few-Shot Text Classification
paper | openreview -
Learning Classifier Synthesis for Generalized Few-Shot Learning
2019-06-07 paper -
Meta-Learning with Domain Adaptation for Few-Shot Learning under Domain Shift
ICLR 2019 paper | openreview -
Learning to Propagate Labels: Transductive Propagation Network for Few-shot Learning
ICLR 2019 2018-05-25 paper | tensorflow-official | pytorch-official | openreview | blog -
Adaptive Posterior Learning: few-shot learning with a surprise-based memory module
ICLR 2019 2019-02-07 paper | openreview pytorch -
A Transductive Multi-Head Model for Cross-Domain Few-Shot Learning
2020-06-08 paper
4 单样本学习
4.1 基于度量的
- Matching Networks for One Shot Learning
NIPS 2016 2016-06-13 paper
4.2 其他
5 零样本学习
-
Zero-data learning of new tasks
AAAI 2008 2008 paper -
Zero-Shot Learning with Semantic Output Codes
NIPS 2009 2009 paper -
DeViSE: A Deep Visual-Semantic Embedding Model
NIPS 2013 2013 paper
DeViSE -
Zero-shot learning through cross-modal transfer
NIPS 2013 2013-01-16 paper | matlab
CMT -
Attribute-Based Classification for Zero-Shot Visual Object Categorization
TPAMI 2013 2013 paper
DAP -
Label Embedding for Attribute-Based Classification
CVPR 2013 2013 paper
ALE -
Transductive Multi-view Embedding for Zero-Shot Recognition and Annotation
ECCV 2014 2014 paper | matlab
TMV-BLP -
Zero-Shot Learning via Visual Abstraction
ECCV 2014 2014 paper | matlab | project -
Zero-Shot Recognition with Unreliable Attributes
NIPS 2014 2014 paper -
Evaluation of Output Embeddings for Fine-Grained Image Classification
CVPR 2015 2015 paper | code
$\bullet \bullet$ - SJE-II -
Zero-Shot Object Recognition by Semantic Manifold Distance
CVPR 2015 2015 paper -
Zero-Shot Learning via Semantic Similarity Embedding
ICCV 2015 2015 paper | code
$\bullet \bullet$ - SSE -
Semi-Supervised Zero-Shot Classification with Label Representation Learning
ICCV 2015 2015 paper
LRL -
Unsupervised Domain Adaptation for Zero-Shot Learning
ICCV 2015 2015 paper
UDA -
Predicting Deep Zero-Shot Convolutional Neural Networks using Textual Descriptions
ICCV 2015 2015 paper - Transductive Multi-view Zero-Shot Learning
TPAMI 2015 2015 paper | matlab
TMV -
An embarrassingly simple approach to zero-shot learning
ICML 2015 2015 paper | python
$\bullet \bullet \bullet$ - EsZSL
入门的工程; -
Label-Embedding for Image Classification
TPAMI 2016 2016 paper
ALE -
Relational Knowledge Transfer for Zero-Shot Learning
AAAI 2016 2016 paper
RKT -
An Empirical Study and Analysis of Generalized Zero-Shot Learning for Object Recognition in the Wild
ECCV 2016 2016 paper -
Multi-Task Zero-Shot Action Recognition with Prioritised Data Augmentation
ECCV 2016 2016 paper MTE -
Zero-Shot Recognition via Structured Prediction
ECCV 2016 2016 paper -
Improving Semantic Embedding Consistency by Metric Learning for Zero-Shot Classification
ECCV 2016 2016 paper -
Multi-Cue Zero-Shot Learning With Strong Supervision
CVPR 2016 2016 paper | project MC-ZSL -
Latent Embeddings for Zero-Shot Classification
CVPR 2016 2016 paper | code
$\bullet \bullet$ - LATEM -
Less Is More: Zero-Shot Learning From Online Textual Documents With Noise Suppression
CVPR 2016 2016 paper
LIM -
Synthesized Classifiers for Zero-Shot Learning
CVPR 2016 2016 paper | code-official | matlab-official
$\bullet \bullet$ - SYNC -
Recovering the Missing Link: Predicting Class-Attribute Associations for Unsupervised Zero-Shot Learning
CVPR 2016 2016 paper
RML -
Zero-Shot Learning via Joint Latent Similarity Embedding
CVPR 2016 2016 paper | code
$\bullet \bullet$ - SLE -
Semantically Consistent Regularization for Zero-Shot Recognition
CVPR 2017 2017 paper | caffe
$\bullet \bullet$ - Deep-SCoRe -
Learning a Deep Embedding Model for Zero-Shot Learning
CVPR 2017 2017 paper | tensorflow
$\bullet \bullet$ - DEM -
From Zero-Shot Learning to Conventional Supervised Classification: Unseen Visual Data Synthesis
CVPR 2017 2017 paper
VDS -
Low-Rank Embedded Ensemble Semantic Dictionary for Zero-Shot Learning
CVPR 2017 2017 paper
ESD -
Semantic Autoencoder for Zero-Shot Learning
CVPR 2017 2017 paper | matlab-official | pytorch
$\bullet \bullet$ - SAE -
Zero-Shot Recognition Using Dual Visual-Semantic Mapping Paths
CVPR 2017 2017 paper
DVSM -
Matrix Tri-Factorization With Manifold Regularizations for Zero-Shot Learning
CVPR 2017 2017 paper
MTF-MR -
Gaze Embeddings for Zero-Shot Image Classification
CVPR 2017 2017 paper | python
$\bullet \bullet$ - SJE -
Zero-Shot learning - The Good, the Bad and the Ugly
CVPR 2017 2017 paper | caffe
$\bullet \bullet$ - GUB -
Attributes2Classname: A Discriminative Model for Attribute-Based Unsupervised Zero-Shot Learning
ICCV 2017 2017 paper | tensorflow
$\bullet \bullet$ - A2C -
Predicting Visual Exemplars of Unseen Classes for Zero-Shot Learning
ICCV 2017 2017 paper | matlab
PVE -
Learning Discriminative Latent Attributes for Zero-Shot Classification
ICCV 2017 2017 paper
LDL -
Zero-Shot Recognition via Direct Classifier Learning with Transferred Samples and Pseudo Labels
AAAI 2017 2017 paper
DCL -
Zero-Shot Learning via Category-Specific Visual-Semantic Mapping and Label Refinement
2018 paper
AEZSL -
Zero-Shot Dialog Generation with Cross-Domain Latent Actions
SIGDIAL 2018 2018 paper | pytorch
$\bullet \bullet$ - ZSGD -
Adversarial Zero-shot Learning With Semantic Augmentation
AAAI 2018 2018 paper
GANZrl -
Joint Dictionaries for Zero-Shot Learning
AAAI 2018 2018 paper
JDZsL -
Zero-Shot Learning via Class-Conditioned Deep Generative Models
AAAI 2018 2018 paper
VZSL -
Zero-Shot Learning With Attribute Selection
AAAI 2018 2018 paper
AS -
Deep Semantic Structural Constraints for Zero-Shot Learning
AAAI 2018 2018 paper
DSSC -
Towards Affordable Semantic Searching: Zero-Shot Retrieval via Dominant Attributes
AAAI 2018 2018 paper
ZsRDA -
Zero-shot learning-A comprehensive evaluation of the good, the bad and the ugly
TPAMI 2018 2017-07-03 paper | project
C-GUB -
Transductive Unbiased Embedding for Zero-Shot Learning
CVPR 2018 2018-03-30 阿里 paper | blog
TUE -
Zero-shot Recognition via Semantic Embeddings and Knowledge Graphs
CVPR 2018 2018 paper | tensorflow
$\bullet \bullet$ - GCN -
Preserving Semantic Relations for Zero-Shot Learning
CVPR 2018 2018 paper
PSR -
A Generative Adversarial Approach for Zero-Shot Learning From Noisy Texts
CVPR 2018 2018 paper
GAN-NT -
Zero-Shot Visual Recognition Using Semantics-Preserving Adversarial Embedding Networks
CVPR 2018 2018 paper | tensorflow
$\bullet \bullet$ - SP-AEN -
Multi-Label Zero-Shot Learning With Structured Knowledge Graphs
CVPR 2018 2018 paper | project
ML-SKG -
Generalized Zero-Shot Learning via Synthesized Examples
CVPR 2018 2018 paper
GZSL-SE -
Feature Generating Networks for Zero-Shot Learning
CVPR 2018 2018 paper | code | project
$\bullet \bullet$ - FGN -
Discriminative Learning of Latent Features for Zero-Shot Recognition
CVPR 2018 2018-03-18 paper | blog
$\bullet \bullet$ latent feature
LDF -
Webly Supervised Learning Meets Zero-shot Learning: A Hybrid Approach for Fine-grained Classification
CVPR 2018 2018 paper WSL -
Selective Zero-Shot Classification with Augmented Attributes
ECCV 2018 2018 paper
SZSL -
Learning Class Prototypes via Structure Alignment for Zero-Shot Recognition
ECCV 2018 2018 paper
LCP-SA -
Multi-modal Cycle-consistent Generalized Zero-Shot Learning
ECCV 2018 2018 paper | tensorflow
$\bullet \bullet$ - MC-ZSL -
Generalized Zero-Shot Learning with Deep Calibration Network
NIPS 2018 2018 paper
DCN -
Stacked Semantics-Guided Attention Model for Fine-Grained Zero-Shot Learning
NIPS 2018 2018 paper S2GA -
Domain-Invariant Projection Learning for Zero-Shot Recognition
NIPS 2018 2018 paper DIPL -
Generalized Zero- and Few-Shot Learning via Aligned Variational Autoencoders
CVPR 2019 2019 paper | pytorch
$\bullet \bullet$ - CADA-VAE -
Generative Dual Adversarial Network for Generalized Zero-shot Learning
CVPR 2019 2019 paper | pytorch
$\bullet \bullet$ - GDAN -
Hybrid-Attention based Decoupled Metric Learning for Zero-Shot Image Retrieval
CVPR 2019 2019 paper | caffe
$\bullet \bullet$ - DeML -
Generalized Zero-Shot Recognition based on Visually Semantic Embedding
CVPR 2019 2019 paper
Gzsl-VSE -
Leveraging the Invariant Side of Generative Zero-Shot Learning
CVPR 2019 2019 paper | pytorch
$\bullet \bullet$ - LisGAN -
Rethinking Knowledge Graph Propagation for Zero-Shot Learning
CVPR 2019 2019 paper | pytorch
$\bullet \bullet$ - DGP -
Domain-Aware Generalized Zero-Shot Learning
CVPR 2019 2019 paper
DAZL -
Progressive Ensemble Networks for Zero-Shot Recognition
CVPR 2019 2019 paper
PrEN -
On Zero-Shot Learning of generic objects
CVPR 2019 2019 paper | pytorch-official
$\bullet \bullet$ -
Semantically Aligned Bias Reducing Zero Shot Learning
CVPR 2019 2019 paper
SABR-T -
Attentive Region Embedding Network for Zero-shot Learning
CVPR 2019 2019 paper | pytorch
$\bullet \bullet$ - AREN -
Marginalized Latent Semantic Encoder for Zero-Shot Learning
CVPR 2019 2019 paper -
Compressing Unknown Classes with Product Quantizer for Efficient Zero-Shot Classification
CVPR 2019 2019 paper
PQZSL -
Gradient Matching Generative Networks for Zero-Shot Learning
CVPR 2019 2019 paper -
Hierarchical Disentanglement of Discriminative Latent Features for Zero-shot Learning
CVPR 2019 2019 paper -
Creativity Inspired Zero-Shot Learning
ICCV 2019 2019 paper pytorch
$\bullet \bullet$ - CIZSL -
Attribute Attention for Semantic Disambiguation in Zero-Shot Learning
ICCV 2019 2019 paper | pytorch
$\bullet \bullet$ - LFGAA+SA -
Transferable Contrastive Network for Generalized Zero-Shot Learning
ICCV 2019 2019 paper
TCN -
Rethinking Zero-Shot Learning: A Conditional Visual Classification Perspective
ICCV 2019 2019 paper
GXE -
Learning Feature-to-Feature Translator by Alternating Back-Propagation for Generative Zero-Shot Learning
ICCV 2019 2019 paper | pytorch
$\bullet \bullet$ -
Modeling Inter and Intra-Class Relations in the Triplet Loss for Zero-Shot Learning
ICCV 2019 2019 paper -
Dual Adversarial Semantics-Consistent Network for Generalized Zero-Shot Learning
NIPS 2019 2019-07-12 paper
双生 GAN; -
Transductive Zero-Shot Learning with Visual Structure Constraint
NIPS 2019 2019 paper | pytorch-official
$\bullet \bullet$ - VSC -
Zero-shot Learning via Simultaneous Generating and Learning
NIPS 2019 2019 paper -
Semantic-Guided Multi-Attention Localization for Zero-Shot Learning
NIPS 2019 2019 paper
SGMA - Visual Space Optimization for Zero-shot Learning
2019-06-30 paper设计了一个新的 loss;
6 元学习
6.1 基于度量的
6.2 基于模型的
- Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
ICML 2017 2017-03-09 伯克利 paper | tensorflow-official | project-official | blog-official
6.3 基于优化的
6.4 其他
-
Amortized Bayesian Meta-Learning
ICLR 2019 paper | openreview -
Learning to Learn with Conditional Class Dependencies
ICLR 2019 paper | openreview
7 应用
7.1 分类
7.2 检测
- Zero-Shot Object Detection: Learning to Simultaneously Recognize and Localize Novel Concepts
ACCV 2018 2018-03-16 paper
7.3 分割
7.4 GAN
7.5 强化学习
- Sample-efficient policy learning in multi-agent Reinforcement Learning via meta-learning
ICML 2019 2018-05-31 paper | openreview
附录
A 资源
B 数据集
名称 | 年份 | 数据量 | 类型 | 类别数 |
---|---|---|---|---|
LAD | Large-scale Attribute Dataset | 230 | ||
CUB | Caltech-UCSD Birds | 200 | ||
AWA2 | Animals | 50 | ||
aPY | attributes Pascal and Yahoo | 32 | ||
Flowers | 102 | |||
SUN | Scene Attributes | 717 |
C 比赛
- AI Challenger 2018
解决方案
D 研究员
- Donald M. Palatucci
-
保罗·维奥拉
linked in Amazon Air科学副总裁,前MIT教授,计算机视觉研究员,ICCV Helmholtz Prize 得主 -
奥里奥尔·温亚尔斯
O. Vinyals google research
Oriol Vinyals是 DeepMind 的研究科学家,主要研究深度学习,博士毕业于加州大学伯克利分校 -
罗布弗格斯
-
李飞飞
profiles wikipedia
斯坦福大学计算机科学系教授,斯坦福视觉实验室负责人,斯坦福大学人工智能实验室(SAIL)前负责人。专业领域是计算机视觉和认知神经科学。2016年11月李飞飞加入谷歌,担任谷歌云AI/ML首席科学家。2018年9月,返回斯坦福任教,现为谷歌云AI/ML顾问。10月20日斯坦福大学「以人为中心的AI计划」开启,李飞飞担任联合负责人。11月20日李飞飞不再担任SAIL负责人,Christopher Manning 接任该职位 -
杜米特鲁·艾尔罕
profiles
谷歌大脑研究员,目前研究重点是可扩展高质量检测、快速单次检测、图像字幕生成、视觉问答和图像理解的结构化输出 -
理查德·索切
profiles Richard Socher(理查德·索赫尔)是Salesforce的首席科学家。 在此之前,他是斯坦福大学计算机科学系的兼职教授,也是2016年被 Salesforce 收购的 MetaMind 的创始人兼首席执行官/首席技术官。研究兴趣:CV、NLP、DL; - 吴恩达
profiles 斯坦福大学教授,人工智能著名学者,机器学习教育者。2011年,吴恩达在谷歌创建了谷歌大脑项目,以通过分布式集群计算机开发超大规模的人工神经网络。2014年5月16日,吴恩达加入百度,负责“百度大脑”计划,并担任百度公司首席科学家。2017年3月20日,吴恩达宣布从百度辞职。2017年12月,吴恩达宣布成立人工智能公司Landing.ai,并担任公司的首席执行官。2018年1月,吴恩达成立了投资机构AI Fund;
Comments