「CV」 超分辨率资源汇总
扩大图像的分辨率,获得清晰画质;在医疗和卫星成像上有着重要应用;
super resolution
2019 年 超分辨率顶会论文数量真的是爆炸了; 好奇怪,这个方向综述论文出奇的多,别的方向都是总共不过 1-2 篇;
1 综述
-
Super-resolution image reconstruction: A technical overview
2003-05 paper -
A Survey on Various Single Image Super Resolution Techniques
2012-12 paper -
Survey on Single image Super Resolution Techniques
2013-04 paper -
A Survey on Various Techniques of Super Resolution Imaging
2014-03 paper -
A Survey on Super-Resolution Methods for Image Reconstruction
2014-03 paper -
A Survey of Single Image and Multi Image Super Resolution Techniques
2014-11 paper -
A Short Survey of Image Super Resolution Algorithms
2015 paper -
A Survey on Single Image Super Resolution Techniques
2016 paper -
Deep Learning for Single Image Super-Resolution: A Brief Review
2018-08-09 paper -
Deep Learning for Image Super-resolution: A Survey
2019-02-16 paper | blog
$\bullet \bullet$ -
A Deep Journey into Super-resolution: A survey
2019-04-16 paper
2 理论
3 基础研究
-
Learning a Deep Convolutional Network for Image Super-Resolution
2014 paper | project | blog | -
Image Super-Resolution Using Deep Convolutional Networks
2014-12-31 paper | project | blog | blog,tensorflow -
To learn image super-resolution, use a GAN to learn how to do image degradation first
ECCV 2018 2018-07-30 paper
人工生成的低分辨率图像,和真实自然存在的图像并不相同;本文就对生成真实低分辩率图像做了相关研究;
4 注意力
-
Hybrid Residual Attention Network for Single Image Super Resolution
2019-07-11 paper -
Image Super-Resolution Using Very Deep Residual Channel Attention Networks
ECCV 2018 2018-07-08 paper | pytorch
深度残差注意力; -
Second-Order Attention Network for Single Image Super-Resolution
CVPR 2019 2019 清华、鹏城实验室、香港理工大学、阿里达摩院 paper | PyTorch
SAN 二阶注意力网络用于图像超分辨率
5 多尺度
-
Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution
CVPR 2017 2017-04-12 paper -
Single Image Super-Resolution via Cascaded Multi-Scale Cross Network
2018-02-24 paper -
Multi-scale Residual Network for Image Super-Resolution
ECCV 2018 2018 paper | pytorch
多尺度残差网络;讲述了经典超分辨率网络,都难以复现,扩展性有限;于是提出了新的结构; -
Multi-scale deep neural networks for real image super-resolution
2019-04-24 paper | tensorflow-offical
6 级联
- Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network
ECCV 2018 2018-03-23 paper | pytorch
级联残差下的快速、准确、轻量级的超分辨率网络;
7 GAN
-
Image super-resolution through deep learning
2014-12-31 paper | tensorflow -
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
CVPR 2016 oral 2016-09-15 paper | torch -
ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks
ECCV 2018 2018-09-01 paper | pytorch-offical
ESRGAN
8 其他
-
Accelerating the Super-Resolution Convolutional Neural Network
ECCV 2016 2016-08-01 paper -
Pixel Recursive Super Resolution
2017-02-02 google paper -
Image Super-Resolution via Deep Recursive Residual Network
CVPR 2017 2017 paper
DRRN -
Deep Residual Network with Enhanced Upscaling Module for Super-Resolution
CVPR 2018 2018 paper -
Deep Back-Projection Networks for Super-Resolution
CVPR 2018 2018-03-07 paper | project | pytorch-offical -
SRFeat: Single Image Super-Resolution with Feature Discrimination
ECCV 2018 2018 paper | project | tensorflow-offical
SRFeat 具有特征识别的单个图像超分辨率;作者认为均方误差不足以表示特征图的真实特点;所以,在特征图中加入了对抗性损失; -
Analyzing Perception-Distortion Tradeoff Using Enhanced Perceptual Super-Resolution Network
ECCV 2018 2018-11-01 paper | pytorch
EPSR 在失真和质量上做权衡; -
Residual Networks for Light Field Image Super-Resolution
CVPR 2019 2019 北京交通大学、北京航空航天大学 paper | pytorch
残差网络用于光场图像超分辨率; -
Natural and Realistic Single Image Super-Resolution With Explicit Natural Manifold Discrimination
CVPR 2019 2019 首尔国立大学 paper | tensorflow
NatSR 自然、逼真的单图像超分辨率; -
ODE-Inspired Network Design for Single Image Super-Resolution
CVPR 2019 2019 中科院、中科院大学、阿里巴巴 paper | pytorch
OISR 单幅图像超分辨,常微分方程启发的网络设计 -
Image Super-Resolution by Neural Texture Transfer
CVPR 2019 2019-03-03 Adobe、田纳西大学 paper | project | tensorflow-offical
SRNTT 神经纹理迁移的图像超分辨率; -
Meta-SR: A Magnification-Arbitrary Network for Super-Resolution
CVPR 2019 2019-03-03 中国科技大学、中科院、旷视、清华 paper | pytorch-offical
Meta-SR 任意缩放因子的超分辨率方法; -
Feedback Network for Image Super-Resolution
CVPR 2019 2019-03-23 四川大学、加州大学圣巴巴拉分校、大不列颠哥伦比亚大学、韩国仁川国立大学 paper | pytorch-offical
SRFBN 反馈网络用于图像超分辨; -
Deep Plug-And-Play Super-Resolution for Arbitrary Blur Kernels
CVPR 2019 2019-03-29 哈尔滨工业大学、香港理工大学、鹏城实验室、阿里达摩院 paper | pytorch
DPSR 能够应对任意模糊核的即插即用深度超分辨率; -
Blind Super-Resolution With Iterative Kernel Correction
CVPR 2019 2019-04-06 香港中文大学、哈尔滨工业大学、中科院深圳先进技术研究院-商汤联合实验室 paper
迭代模糊核校正的盲超分辨率; -
Camera Lens Super-Resolution
CVPR 2019 2019-04-06 中国科技大学 paper | tensorflow-offical
CameraSR 考虑真实成像环境分辨率和视野关系的镜头超分辨率; -
Towards Real Scene Super-Resolution With Raw Images
CVPR 2019 2019-05-29 商汤 paper | project | code-offical
Raw 图像的真实场景超分辨率,模拟真实成像过程生成训练数据,基于相机Raw数据进行超分辨率; -
Flickr1024: A Large-Scale Dataset for Stereo Image Super-Resolution
ICCV 2019 workshop 2019-03-15 paper
9 应用
9.1 视频
9.2 3D
- 3D Appearance Super-Resolution With Deep Learning
CVPR 2019 2019-06-03 瑞士苏黎世联邦理工学院,微软 paper | pytorch-offical
3DASR 3D 表面超分辨;
9.3 双目
- Learning Parallax Attention for Stereo Image Super-Resolution
CVPR 2019 2019-03-14 国防科技大学、盲信号处理重点实验室 paper | pytorch
PASSRnet 双目超分辨率算法,提出并行注意力模型;
9.4 高光谱图像
- Hyperspectral Image Super-Resolution With Optimized RGB Guidance
CVPR 2019 2019 北京理工大学、日本国立情报学研究所、格灵深瞳 paper
高光谱图像超分辨率;
9.5 人脸
- Face Super-resolution Guided by Facial Component Heatmaps
ECCV 2018 2018 paper
CARN 针对人脸特性设计了特殊的网络,需要更少的训练样本;数据集用的 DIV2K;易复现;
Comments