3 minute read

在不影响数字载体(包括多媒体——图片、视频、音频,文档,软件等)使用价值的情况下,将标识信息嵌入到载体中;
数字水印侧重于水印信息的鲁棒性,隐写侧重中水印信息的隐蔽性;


图1:数字水印流程

Digital Watermarking · Steganography

1 数字水印

1.1 综述

  1. Watermarking of Digital Images
    2012-06-03 paper
    $\bullet \bullet$
    关于传统算法的水印综述,内容非常全面广泛,除了没有覆盖到 DL;
    貌似是 99 年的论文,因为原稿丢了,12 年重新出版了这个;

  2. A Survey of Digital Watermarking Techniques and its Applications
    2014-07-17 paper
    $\bullet \bullet$ 入门
    关于传统水印算法的总数,总共 4 页,真是短小精悍;看完会对水印有个整体认识的,非常推荐作为水印入门读物;

    可惜了我花了两天时间要死要活地折腾出一个Survey,要是早看到这篇,分分钟搞定,看来还是综述文章最容易入门;

  3. Analysis of Visible and Invisible Image Watermarking – A Review
    2016-08 paper
    针对传统方法的综述,主讲了 DWT、DCT 和 DFT;

    文章内容较少,不是一篇优质的 review,应该是频域水印算法回顾;

  4. A Comprehensive Survey of Watermarking Relational Databases Research
    2018-01-25 paper
    数据库和数字指纹综述;

    似乎已经超出 CV 领域,不过也有借鉴意义,空了可以看;

1.2 理论

  1. Steganography Security: Principle and Practice
    2018-06-10 paper
    对比了隐写术和数字水印的安全性差异;

1.3 传统方法

  1. A New Method For Digital Watermarking Based on Combination of DCT and PCA
    TELFOR 2014 2015-09-10 paper

  2. Digital image watermarking using normal matrices
    2015-05-23 paper

  3. OR-Benchmark: An Open and Reconfigurable Digital Watermarking Benchmarking Framework
    2015-05-31 paper

1.4 深度学习

1.4.1 通用

  1. Watermarking Deep Neural Networks for Embedded Systems
    ICCAD 2018 2018 paper

  2. Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring
    2018-02-13 paper

  3. Protecting Intellectual Property of Deep Neural Networks with Watermarking
    AsiaCCS 2018 paper

  4. On the Robustness of the Backdoor-based Watermarking in Deep Neural Networks
    2019-06-18 paper

1.4.2 图像

1.4.3 音频

1.4.4 视频

1.4.5 网络模型

给模型打水印;

  1. DeepSigns: An End-to-End Watermarking Framework for Protecting the Ownership of Deep Neural Networks
    paper

  2. Embedding Watermarks into Deep Neural Networks
    ICMR 2017 2017-01-15 paper | keras

  3. Digital Watermarking for Deep Neural Networks
    2018-02-06 paper

  4. Have You Stolen My Model? Evasion Attacks Against Deep Neural Network Watermarking Techniques
    2018-09-03 paper

  5. Cryptographic key distribution over a public network via variance-based watermarking in compressive measurements
    2019-03-30 paper

  6. Effectiveness of Distillation Attack and Countermeasure on Neural Network Watermarking
    2019-06-14 paper

1.4.6 跨模态

2 隐写术

1.1 综述

  1. Deep Learning in steganography and steganalysis from 2015 to 2018
    2019-03-31 paper

  2. Recent Advances of Image Steganography with Generative Adversarial Networks
    2019-06-18 paper
    GAN 在隐写术里的应用;

2.2 理论

  1. Steganography Security: Principle and Practice
    2018-06-10 paper
    对比了隐写术和数字水印的安全性差异;

2.3 传统方法

2.4 深度学习

2.4.1 通用

  1. Moving Steganography and Steganalysis from the Laboratory into the Real World
    2013-06-20 paper
    显示应用;

  2. SSGAN: Secure Steganography Based on Generative Adversarial Networks
    2017-06-06 paper

  3. Convolutional Neural Network Steganalysis’s Application to Steganography
    2017-11-06 paper

  4. Generative Steganography with Kerckhoffs’ Principle based on Generative Adversarial Networks
    2017-11-14 paper

  5. CycleGAN, a Master of Steganography
    NIPS 2017 2017-12-08 paper

  6. SteganoGAN: High Capacity Image Steganography with GANs
    2019-01-12 paper | pytorch-offical | 文档

  7. Learning Symmetric and Asymmetric Steganography via Adversarial Training
    2019-03-13 paper

  8. BASN – Learning Steganography with Binary Attention Mechanism
    2019-07-09 paper

  9. Steganography using a 3 player game
    2019-07-14 paper

2.4.2 图像

  1. Generating steganographic images via adversarial training
    2017-03-01 paper

  2. End-to-end Trained CNN Encode-Decoder Networks for Image Steganography
    2017-11-20 paper

  3. A Novel Convolutional Neural Network for Image Steganalysis with Shared Normalization
    2017-11-20 paper

  4. Deep Learning Hierarchical Representations for Image Steganalysis
    2017-11 paper | pytorch

  5. CNN Based Adversarial Embedding with Minimum Alteration for Image Steganography
    IEEE 2018-03-24 paper

  6. Spatial Image Steganography Based on Generative Adversarial Network
    2018-04-21 paper

  7. StegNet: Mega Image Steganography Capacity with Deep Convolutional Network
    2018-06-17 paper | tensorflow-offical

  8. Invisible Steganography via Generative Adversarial Networks
    2018-07-23 paper

  9. Efficient feature learning and multi-size image steganalysis based on CNN
    2018-07-30 paper
    ZhuNet,任意尺寸输入,Inception 有效性证明;

  10. StegoAppDB: a Steganography Apps Forensics Image Database
    2019-04-19 paper
    数据集;

  11. EncryptGAN: Image Steganography with Domain Transform
    2019-05-28 paper

2.4.3 音频

  1. Steganography between Silence Intervals of Audio in Video Content Using Chaotic Maps
    2016-10-14 paper
    音轨中静默片段放水印;

  2. StegIbiza: Steganography in Club Music Implemented in Python
    2017-05-22 paper

  3. AAG-Stega: Automatic Audio Generation-based Steganography
    AAAi 2019 2018-09-10 paper

  4. Hide and Speak: Deep Neural Networks for Speech Steganography
    2019-02-07 paper

  5. Heard More Than Heard: An Audio Steganography Method Based on GAN
    2019-07-11 paper

2.4.4 视频

  1. Convolutional Video Steganography with Temporal Residual Modeling
    2018-06-08 paper

2.4.5 网络模型

给模型打水印;

  1. DeepStego: Protecting Intellectual Property of Deep Neural Networks by Steganography
    2019-03-05 paper

2.4.6 跨模态

  1. Provably Secure Steganography on Generative Media
    2018-11-09 paper

3 攻击

  1. Fraternal Twins: Unifying Attacks on Machine Learning and Digital Watermarking
    2017-03-16 paper

  2. Attacks on Digital Watermarks for Deep Neural Networks
    2019 paper

4 防篡改

video tampering

  1. Computer-Aided Annotation for Video Tampering Dataset of Forensic Research
    2018-02-07 paper

  2. ARCHANGEL: Tamper-proofing Video Archives using Temporal Content Hashes on the Blockchain
    CVPR 2019 workshop 2019-04-26 paper


TOP

附录

A 参考资料

B 数据集

数据集 训练集(万张) 验证集(万张) 测试集(万张) 分辨率
BOSS 0.9 0.1   512×512

Comments