「CV」 人群计数资源汇总
1 综述
-
A Survey of Human-Sensing: Methods for Detecting Presence, Count, Location, Track, and Identity
CSUR 2010 2010 paper -
Fast crowd density estimation with convolutional neural networks
AI 2015 2015 paper -
Crowded Scene Analysis:A Survey
IEEE Transactions on Circuits and Systems for Video Technology 2015 2015-02-06 paper -
An Evaluation of Crowd Counting Methods, Features and Regression Models
CVIU 2015 2015 paper -
Advances and Trends in Visual Crowd Analysis: A Systematic Survey and Evaluation of Crowd Modelling Techniques
Neurocomputing 2016 2016 paper -
A Survey of Recent Advances in CNN-based Single Image Crowd Counting and Density Estimation
PR Letters 2018 2017-07-05 paper -
Beyond Counting:Comparisons of Density Maps for Crowd Analysis Tasks
T-CSVT2018 2017-05-29 paper
2 理论
3 通用
-
Crowd Counting Via Scale-adaptive Convolutional Neural Network
WACV 2018 2017-11-13 paper | caffe
SaCNN -
Revisiting Perspective Information for Efficient Crowd Counting
CVPR 2019 2018-07-05 paper
PACNN -
Context-Aware Crowd Counting
CVPR 2019 2018-11-26 paper | pytorch
CAN -
ADCrowdNet: An Attention-injective Deformable Convolutional Network for Crowd Understanding
CVPR 2019 2018-11-29 paper
ADCrowdNet -
Adaptive Scenario Discovery for Crowd Counting
ICASSP 2019 2018-12-06 paper
ASD -
Almost Unsupervised Learning for Dense Crowd Counting
AAAI 2019 2019 云从 paper | blog
GWTA-CCNN -
Scale Pyramid Network for Crowd Counting
WACV 2019 2019-01-17 paper
SPN -
Exploiting Unlabeled Data in CNNs by Self-supervised Learning to Rank
T-PAMI 2019 2019-02-17 paper
SL2R -
Crowd Counting and Density Estimation by Trellis Encoder-Decoder Networks
CVPR 2019 2019-03-03 paper
TEDnet -
Crowd Counting Using Scale-Aware Attention Networks
WACV 2019 2019-03-05 paper
SAAN -
Crowd Counting via Multi-View Scale Aggregation Networks
ICME 2019 2019 -
Dynamic Region Division for Adaptive Learning Pedestrian Counting
ICME 2019 2019 -
Locality-Constrained Spatial Transformer Network for Video Crowd Counting
ICME 2019 2019 -
Learning from Synthetic Data for Crowd Counting in the Wild
CVPR 2019 2019-03-08 paper | project | pytorch | dataset| 标注工具
CCWld
开源了一个数据集 GCC; -
CODA: Counting Objects via Scale-aware Adversarial Density Adaption
ICME 2019 2019-03-25 paper | code-offical-coming
CODA -
Counting with Focus for Free
2019-03-28 paper -
Cross-Line Pedestrian Counting Based on Spatially-Consistent Two-Stage Local Crowd Density Estimation and Accumulation
IEEE T-CSVT 2019 2019 paper -
Point in, Box out: Beyond Counting Persons in Crowds
CVPR 2019 2019-04-02 paper
PSDDN -
PCC Net: Perspective Crowd Counting via Spatial Convolutional Network
IEEE T-CSVT 2019 2019-05-24 paper | pytorch-offical
PCC-Net
$\bullet \bullet$ -
Leveraging Heterogeneous Auxiliary Tasks to Assist Crowd Counting
CVPR 2019 2019 paper
AT-CFCN -
Wide-Area Crowd Counting via Ground-Plane Density Maps and Multi-View Fusion CNNs
CVPR 2019 2019 paper
MVMS -
Residual Regression with Semantic Prior for Crowd Counting
CVPR 2019 2019 paper
RRSP -
Density Map Regression Guided Detection Network for RGB-D Crowd Counting and Localization
CVPR 2019 2019 paper
RDNet -
Recurrent Attentive Zooming for Joint Crowd Counting and Precise Localization
CVPR 2019 2019 paper
RAZ-Net -
Content-aware Density Map for Crowd Counting and Density Estimation
2019-06-17 paper -
Locate, Size and Count: Accurately Resolving People in Dense Crowds via Detection
2019-06-18 paper | pytorch-offical -
Dense Scale Network for Crowd Counting
2019-06-24 paper -
Inverse Attention Guided Deep Crowd Counting Network
AVSS 2019 2019-07-02 paper
IA-DNN -
C^3 Framework: An Open-source PyTorch Code for Crowd Counting
2019-07-05 paper | pytorch-offical | blog-offical
4 基于视频
附录
A 参考资料
- gjy3035. Awesome Crowd Counting. https://github.com/gjy3035/Awesome-Crowd-Counting. /2019-07-16.
- paper with code. Crowd Counting. https://paperswithcode.com/task/crowd-counting/codeless. -/2019-07-16.
- 人群计数(Crowd Counting)研究综述
B 性能比对
ShanghaiTech Part A
Year-Conference/Journal | Methods | MAE | MSE | PSNR | SSIM | Params | Pre-trained Model |
---|---|---|---|---|---|---|---|
2016–CVPR | MCNN | 110.2 | 173.2 | 21.4CSR | 0.52CSR | 0.13MSANet | None |
2017–AVSS | CMTL | 101.3 | 152.4 | - | - | - | None |
2017–CVPR | Switching CNN | 90.4 | 135.0 | - | - | 15.11MSANet | VGG-16 |
2017–ICIP | MSCNN | 83.8 | 127.4 | - | - | - | - |
2017–ICCV | CP-CNN | 73.6 | 106.4 | 21.72CP-CNN | 0.72CP-CNN | 68.4MSANet | - |
2018–AAAI | TDF-CNN | 97.5 | 145.1 | - | - | - | - |
2018–WACV | SaCNN | 86.8 | 139.2 | - | - | - | - |
2018–CVPR | ACSCP | 75.7 | 102.7 | - | - | 5.1M | None |
2018–CVPR | D-ConvNet-v1 | 73.5 | 112.3 | - | - | - | - |
2018–CVPR | IG-CNN | 72.5 | 118.2 | - | - | - | - |
2018–CVPR | L2R (Multi-task, Query-by-example) | 72.0 | 106.6 | - | - | - | VGG-16 |
2018–CVPR | L2R (Multi-task, Keyword) | 73.6 | 112.0 | - | - | - | VGG-16 |
2018–IJCAI | DRSAN | 69.3 | 96.4 | - | - | - | - |
2018–ECCV | ic-CNN (one stage) | 69.8 | 117.3 | - | - | - | - |
2018–ECCV | ic-CNN (two stages) | 68.5 | 116.2 | - | - | - | - |
2018–CVPR | CSRNet | 68.2 | 115.0 | 23.79 | 0.76 | 16.26MSANet | VGG-16 |
2018–ECCV | SANet | 67.0 | 104.5 | - | - | 0.91M | None |
2019–AAAI | GWTA-CCNN | 154.7 | 229.4 | - | - | - | - |
2019–ICASSP | ASD | 65.6 | 98.0 | - | - | - | - |
2019–CVPR | SFCN | 64.8 | 107.5 | - | - | - | - |
2019–CVPR | TEDnet | 64.2 | 109.1 | 25.88 | 0.83 | 1.63M | - |
2019–CVPR | ADCrowdNet(AMG-bAttn-DME) | 63.2 | 98.9 | 24.48 | 0.88 | - | - |
2019–CVPR | PACNN | 66.3 | 106.4 | - | - | - | - |
2019–CVPR | PACNN+CSRNet | 62.4 | 102.0 | - | - | - | - |
2019–CVPR | CAN | 62.3 | 100.0 | - | - | - | - |
2019–WACV | SPN | 61.7 | 99.5 | - | - | - | - |
ShanghaiTech Part B
Year-Conference/Journal | Methods | MAE | MSE |
---|---|---|---|
2016–CVPR | MCNN | 26.4 | 41.3 |
2017–ICIP | MSCNN | 17.7 | 30.2 |
2017–AVSS | CMTL | 20.0 | 31.1 |
2017–CVPR | Switching CNN | 21.6 | 33.4 |
2017–ICCV | CP-CNN | 20.1 | 30.1 |
2018–TIP | BSAD | 20.2 | 35.6 |
2018–WACV | SaCNN | 16.2 | 25.8 |
2018–CVPR | ACSCP | 17.2 | 27.4 |
2018–CVPR | CSRNet | 10.6 | 16.0 |
2018–CVPR | IG-CNN | 13.6 | 21.1 |
2018–CVPR | D-ConvNet-v1 | 18.7 | 26.0 |
2018–CVPR | DecideNet | 21.53 | 31.98 |
2018–CVPR | DecideNet + R3 | 20.75 | 29.42 |
2018–CVPR | L2R (Multi-task, Query-by-example) | 14.4 | 23.8 |
2018–CVPR | L2R (Multi-task, Keyword) | 13.7 | 21.4 |
2018–IJCAI | DRSAN | 11.1 | 18.2 |
2018–AAAI | TDF-CNN | 20.7 | 32.8 |
2018–ECCV | ic-CNN (one stage) | 10.4 | 16.7 |
2018–ECCV | ic-CNN (two stages) | 10.7 | 16.0 |
2018–ECCV | SANet | 8.4 | 13.6 |
2019–WACV | SPN | 9.4 | 14.4 |
2019–ICASSP | ASD | 8.5 | 13.7 |
2019–CVPR | TEDnet | 8.2 | 12.8 |
2019–CVPR | CAN | 7.8 | 12.2 |
2019–CVPR | ADCrowdNet(AMG-attn-DME) | 7.7 | 12.9 |
2019–CVPR | ADCrowdNet(AMG-DME) | 7.6 | 13.9 |
2019–CVPR | SFCN | 7.6 | 13.0 |
2019–CVPR | PACNN | 8.9 | 13.5 |
2019–CVPR | PACNN+CSRNet | 7.6 | 11.8 |
UCF-QNRF
Year-Conference/Journal | Method | C-MAE | C-NAE | C-MSE | DM-MAE | DM-MSE | DM-HI | L- Av. Precision | L-Av. Recall | L-AUC |
---|---|---|---|---|---|---|---|---|---|---|
2013–CVPR | Idrees 2013CL | 315 | 0.63 | 508 | - | - | - | - | - | - |
2016–CVPR | MCNNCL | 277 | 0.55 | 0.006670 | 0.0223 | 0.5354 | 59.93% | 63.50% | 0.591 | |
2017–AVSS | CMTLCL | 252 | 0.54 | 514 | 0.005932 | 0.0244 | 0.5024 | - | - | - |
2017–CVPR | Switching CNNCL | 228 | 0.44 | 445 | 0.005673 | 0.0263 | 0.5301 | - | - | - |
2018–ECCV | CL | 132 | 0.26 | 191 | 0.00044 | 0.0017 | 0.9131 | 75.8% | 59.75% | 0.714 |
2019–CVPR | TEDnet | 113 | - | 188 | - | - | - | - | - | - |
2019–CVPR | CAN | 107 | - | 183 | - | - | - | - | - | - |
2019–CVPR | SFCN | 102.0 | - | 171.4 | - | - | - | - | - | - |
UCF_CC_50
Year-Conference/Journal | Methods | MAE | MSE |
---|---|---|---|
2013–CVPR | Idrees 2013 | 468.0 | 590.3 |
2015–CVPR | Zhang 2015 | 467.0 | 498.5 |
2016–ACM MM | CrowdNet | 452.5 | - |
2016–CVPR | MCNN | 377.6 | 509.1 |
2016–ECCV | CNN-Boosting | 364.4 | - |
2016–ECCV | Hydra-CNN | 333.73 | 425.26 |
2016–ICIP | Shang 2016 | 270.3 | - |
2017–ICIP | MSCNN | 363.7 | 468.4 |
2017–AVSS | CMTL | 322.8 | 397.9 |
2017–CVPR | Switching CNN | 318.1 | 439.2 |
2017–ICCV | CP-CNN | 298.8 | 320.9 |
2017–ICCV | ConvLSTM-nt | 284.5 | 297.1 |
2018–TIP | BSAD | 409.5 | 563.7 |
2018–AAAI | TDF-CNN | 354.7 | 491.4 |
2018–WACV | SaCNN | 314.9 | 424.8 |
2018–CVPR | IG-CNN | 291.4 | 349.4 |
2018–CVPR | ACSCP | 291.0 | 404.6 |
2018–CVPR | L2R (Multi-task, Query-by-example) | 291.5 | 397.6 |
2018–CVPR | L2R (Multi-task, Keyword) | 279.6 | 388.9 |
2018–CVPR | D-ConvNet-v1 | 288.4 | 404.7 |
2018–CVPR | CSRNet | 266.1 | 397.5 |
2018–ECCV | ic-CNN (two stages) | 260.9 | 365.5 |
2018–ECCV | SANet | 258.4 | 334.9 |
2018–IJCAI | DRSAN | 219.2 | 250.2 |
2019–AAAI | GWTA-CCNN | 433.7 | 583.3 |
2019–WACV | SPN | 259.2 | 335.9 |
2019–CVPR | ADCrowdNet(DME) | 257.1 | 363.5 |
2019–CVPR | TEDnet | 249.4 | 354.5 |
2019–CVPR | PACNN | 267.9 | 357.8 |
2019–CVPR | PACNN+CSRNet | 241.7 | 320.7 |
2019–CVPR | SFCN | 214.2 | 318.2 |
2019–CVPR | CAN | 212.2 | 243.7 |
2019–ICASSP | ASD | 196.2 | 270.9 |
WorldExpo’10
Year-Conference/Journal | Method | S1 | S2 | S3 | S4 | S5 | Avg. |
---|---|---|---|---|---|---|---|
2015–CVPR | Zhang 2015 | 9.8 | 14.1 | 14.3 | 22.2 | 3.7 | 12.9 |
2016–CVPR | MCNN | 3.4 | 20.6 | 12.9 | 13.0 | 8.1 | 11.6 |
2017–ICIP | MSCNN | 7.8 | 15.4 | 14.9 | 11.8 | 5.8 | 11.7 |
2017–ICCV | ConvLSTM-nt | 8.6 | 16.9 | 14.6 | 15.4 | 4.0 | 11.9 |
2017–ICCV | ConvLSTM | 7.1 | 15.2 | 15.2 | 13.9 | 3.5 | 10.9 |
2017–ICCV | Bidirectional ConvLSTM | 6.8 | 14.5 | 14.9 | 13.5 | 3.1 | 10.6 |
2017–CVPR | Switching CNN | 4.4 | 15.7 | 10.0 | 11.0 | 5.9 | 9.4 |
2017–ICCV | CP-CNN | 2.9 | 14.7 | 10.5 | 10.4 | 5.8 | 8.86 |
2018–AAAI | TDF-CNN | 2.7 | 23.4 | 10.7 | 17.6 | 3.3 | 11.5 |
2018–CVPR | IG-CNN | 2.6 | 16.1 | 10.15 | 20.2 | 7.6 | 11.3 |
2018–TIP | BSAD | 4.1 | 21.7 | 11.9 | 11.0 | 3.5 | 10.5 |
2018–ECCV | ic-CNN | 17.0 | 12.3 | 9.2 | 8.1 | 4.7 | 10.3 |
2018–CVPR | DecideNet | 2.0 | 13.14 | 8.9 | 17.4 | 4.75 | 9.23 |
2018–CVPR | D-ConvNet-v1 | 1.9 | 12.1 | 20.7 | 8.3 | 2.6 | 9.1 |
2018–CVPR | CSRNet | 2.9 | 11.5 | 8.6 | 16.6 | 3.4 | 8.6 |
2018–WACV | SaCNN | 2.6 | 13.5 | 10.6 | 12.5 | 3.3 | 8.5 |
2018–ECCV | SANet | 2.6 | 13.2 | 9.0 | 13.3 | 3.0 | 8.2 |
2018–IJCAI | DRSAN | 2.6 | 11.8 | 10.3 | 10.4 | 3.7 | 7.76 |
2018–CVPR | ACSCP | 2.8 | 14.05 | 9.6 | 8.1 | 2.9 | 7.5 |
2019–CVPR | TEDnet | 2.3 | 10.1 | 11.3 | 13.8 | 2.6 | 8.0 |
2019–CVPR | PACNN | 2.3 | 12.5 | 9.1 | 11.2 | 3.8 | 7.8 |
2019–CVPR | ADCrowdNet(AMG-bAttn-DME) | 1.7 | 14.4 | 11.5 | 7.9 | 3.0 | 7.7 |
2019–CVPR | ADCrowdNet(AMG-attn-DME) | 1.6 | 13.2 | 8.7 | 10.6 | 2.6 | 7.3 |
2019–CVPR | CAN | 2.9 | 12.0 | 10.0 | 7.9 | 4.3 | 7.4 |
2019–CVPR | CAN(ECAN) | 2.4 | 9.4 | 8.8 | 11.2 | 4.0 | 7.2 |
UCSD
Year-Conference/Journal | Method | MAE | MSE |
---|---|---|---|
2015–CVPR | Zhang 2015 | 1.60 | 3.31 |
2016–ECCV | Hydra-CNN | 1.65 | - |
2016–ECCV | CNN-Boosting | 1.10 | - |
2016–CVPR | MCNN | 1.07 | 1.35 |
2017–ICCV | ConvLSTM-nt | 1.73 | 3.52 |
2017–CVPR | Switching CNN | 1.62 | 2.10 |
2017–ICCV | ConvLSTM | 1.30 | 1.79 |
2017–ICCV | Bidirectional ConvLSTM | 1.13 | 1.43 |
2018–CVPR | CSRNet | 1.16 | 1.47 |
2018–CVPR | ACSCP | 1.04 | 1.35 |
2018–ECCV | SANet | 1.02 | 1.29 |
2018–TIP | BSAD | 1.00 | 1.40 |
2019–WACV | SPN | 1.03 | 1.32 |
2019–CVPR | ADCrowdNet(DME) | 0.98 | 1.25 |
2019–CVPR | PACNN | 0.89 | 1.18 |
Mall
Year-Conference/Journal | Method | MAE | MSE |
---|---|---|---|
2012–BMVC | Chen 2012 | 3.15 | 15.7 |
2016–ECCV | CNN-Boosting | 2.01 | - |
2017–ICCV | Bidirectional ConvLSTM | 2.10 | 7.6 |
2018–CVPR | DecideNet | 1.52 | 1.90 |
Comments