less than 1 minute read

1 综述

2 理论

3 GAN

4 AutoEncoder

  1. Learning to Confuse: Generating Training Time Adversarial Data with Auto-Encoder
    2019-05-22 paper

5 应用

5.1 分割

  1. Defective samples simulation through Neural Style Transfer for automatic surface defect segment
    2019-10-08 paper
    GAN 生成缺陷样本;

6 其他

  1. Some improvements on deep convolutional neural network based image classification
    2013-12-19 paper | torch | blog | openreview | paper with code | blog
    颜色抖动

  2. Improved Regularization of Convolutional Neural Networks with Cutout
    2017-08-15 paper | pytorch-official

  3. AutoAugment: Learning Augmentation Policies from Data
    CVPR 2019 2018-05-24 paper | tensorflow-official | numpy

  4. When Unseen Domain Generalization is Unnecessary? Rethinking Data Augmentation
    2019-06-07 paper

  5. Autoaugment: Learning augmentation strategies from data
    CVPR 2019 2019 paper | blog
    $\bullet \bullet$
    探讨了监督学习中的数据增广问题;

  6. Online Hyper-parameter Learning for Auto-Augmentation Strategy
    2019-05-17 paper
    $\bullet \bullet$
    在线超参数据增强;

  7. Faster AutoAugment: Learning Augmentation Strategies using Backpropagation
    2019-11-16 paper


TOP

附录

A 资源

  1. 样本增广自动化-AutoAugment论文解读

B 参考资料

  1. 几种新的regularization方法

Comments